你是否想过如何在linux系统中为你的字符设备编写驱动程序?你是否想过如何在linux系统中让你的驱动程序实现一些基本的功能,比如打开、关闭、读、写、控制等?你是否想过如何在linux系统中让你的驱动程序实现一些高级的功能,比如异步通知、多路复用、内存映射等?如果你对这些问题感兴趣,那么本文将为你介绍一种实现这些目标的有效方法——linux设备驱动之字符设备。字符设备是一种用于描述顺序访问设备的数据结构,它可以让你用一种简单而统一的方式,将字符设备的信息和属性传递给内核,从而实现设备的识别和驱动。字符设备也是一种用于实现基本功能的机制,它可以让你用一种标准而通用的方式,定义和使用各种字符设备的操作和命令,从而实现打开、关闭、读、写、控制等功能。字符设备还是一种用于实现高级功能的框架,它可以让你用一种灵活而可扩展的方式,定义和使用各种字符设备的接口和协议,从而实现异步通知、多路复用、内存映射等功能。本文将从字符设备的基本概念、语法规则、编写方法、注册过程、操作方式等方面,为你详细地介绍字符设备在linux设备驱动中的应用和作用,帮助你掌握这种有用而强大的方法。

Linux设备驱动之字符设备:一种描述和管理顺序访问设备的便捷方法

字符设备是3大类设备(字符设备、块设备和网络设备)中较简单的一类设备,其驱动程序中完成的主要工作是初始化、添加和删除cdev结构体,申请和释放设备号,以及填充 file_operations结构体中的操作函数,实现file_operations结构体中的read()、write()和ioctl()等函数是驱动设计的主体工作。


参考例程

源码

/*
 * 虚拟字符设备globalmem实例:
 *  在globalmem字符设备驱动中会分配一片大小为 GLOBALMEM_SIZE(4KB)
 *  的内存空间,并在驱动中提供针对该片内存的读写、控制和定位函数,以供用户空间的进程能通过
 *  Linux系统调用访问这片内存。
 */
#include 
#include 
#include 
#include 

#include 
#include 
#include 
#include 
#include 
#include 
#include 

#define DEV_NAME "globalmem" /* /dev中显示的设备名 */
#define DEV_MAJOR 0 /*
 指定主设备号,为0则动态获取 */

/* ioctl用的控制字 */
#define GLOBALMEM_MAGIC 'M'
#define MEM_CLEAR _IO(GLOBALMEM_MAGIC, 0)

/*--------------------------------------------------------------------- local vars */
/*globalmem设备结构体*/
typedef struct {
    struct cdev cdev; /* 字符设备cdev结构体*/

#define MEM_SIZE 0x1000 /*全局内存最大4K字节*/
    unsigned char mem[MEM_SIZE]; /*全局内存*/
    struct semaphore sem; /*并发控制用的信号量*/
} globalmem_dev_t;

static int globalmem_major = DEV_MAJOR;
static globalmem_dev_t *globalmem_devp; /*设备结构体指针*/

/*--------------------------------------------------------------------- file operations */
/*文件打开函数*/
static int globalmem_open(struct inode *inodep, struct file *filep)
{
    /* 获取dev指针 */
    globalmem_dev_t *dev = container_of(inodep->i_cdev, globalmem_dev_t, cdev);
    filep->private_data = dev;
    return 0;
}
/*文件释放函数*/
static int globalmem_release(struct inode *inodep, struct file *filep)
{
    return 0;
}
/*读函数*/
static ssize_t globalmem_read(struct file *filep, char __user *buf, size_t len, loff_t *ppos)
{
    globalmem_dev_t *dev = filep->private_data;

    unsigned long p = *ppos; 
    int ret = 0;

    /*分析和获取有效的长度*/
    if (p > MEM_SIZE) {
        printk(KERN_EMERG "%s: overflow!\n", __func__);
        return - ENOMEM;
    }
    if (len > MEM_SIZE - p) {
        len = MEM_SIZE - p;
    }

    if (down_interruptible(&dev->sem)) /* 获得信号量*/
        return  - ERESTARTSYS;

    /*内核空间->用户空间*/
    if (copy_to_user(buf, (void*)(dev->mem + p), len)) {
        ret = - EFAULT;
    }else{
        *ppos += len;

        printk(KERN_INFO "%s: read %d bytes from %d\n", DEV_NAME, (int)len, (int)p);
        ret = len;
    }

    up(&dev->sem); /* 释放信号量*/

    return ret;
}
/*写函数*/
static ssize_t globalmem_write(struct file *filep, const char __user *buf, size_t len, 
loff_t *ppos)
{
    globalmem_dev_t *dev = filep->private_data;
    int ret = 0;

    unsigned long p = *ppos; 
    if (p > MEM_SIZE) {
        printk(KERN_EMERG "%s: overflow!\n", __func__);
        return - ENOMEM;
    }

    if (len > MEM_SIZE - p) {
        len = MEM_SIZE - p;
    }

    if (down_interruptible(&dev->sem)) /* 获得信号量*/
        return  - ERESTARTSYS;

    /*用户空间->内核空间*/
    if (copy_from_user(dev->mem + p, buf, len)) {
        ret =  - EFAULT;
    }else{
        *ppos += len;

        printk(KERN_INFO "%s: written %d bytes from %d\n", DEV_NAME, (int)len, (int)p);
        ret = len;
    }

    up(&dev->sem); /* 释放信号量*/

    return ret;
}
/* seek文件定位函数 */
static loff_t globalmem_llseek(struct file *filep, loff_t offset, int start)
{
    globalmem_dev_t *dev = filep->private_data;
    int ret = 0;

    if (down_interruptible(&dev->sem)) /* 获得信号量*/
        return  - ERESTARTSYS;

    switch (start) {
        case SEEK_SET:
            if (offset  MEM_SIZE) {
                printk(KERN_EMERG "%s: overflow!\n", __func__);
                return - ENOMEM;
            }

            ret = filep->f_pos = offset;
            break;
        case SEEK_CUR:
            if ((filep->f_pos + offset) f_pos + offset) > MEM_SIZE) {
                printk(KERN_EMERG "%s: overflow!\n", __func__);
                return - ENOMEM;
            }

            ret = filep->f_pos += offset;
            break;
        default:
            return - EINVAL;
            break;
    }

    up(&dev->sem); /* 释放信号量*/

    printk(KERN_INFO "%s: set cur to %d.\n", DEV_NAME, ret);

    return ret;
}
/* ioctl设备控制函数 */
static long globalmem_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
{
    globalmem_dev_t *dev = filep->private_data;

    switch (cmd) {
        case MEM_CLEAR:
            if (down_interruptible(&dev->sem)) /* 获得信号量*/
                return  - ERESTARTSYS;

            memset(dev->mem, 0, MEM_SIZE);
            up(&dev->sem); /* 释放信号量*/

            printk(KERN_INFO "%s: clear.\n", DEV_NAME);
            break;
        default:
            return - EINVAL;
    }

    return 0;
}
/*文件操作结构体*/
static const struct file_operations globalmem_fops = {
    .owner = THIS_MODULE,
    .open         = globalmem_open,
    .release      = globalmem_release,
    .read         = globalmem_read,
    .write        = globalmem_write,
    .llseek       = globalmem_llseek,
    .compat_ioctl = globalmem_ioctl
};

/*---------------------------------------------------------------------*/
/*初始化并注册cdev*/
static int globalmem_setup(globalmem_dev_t *dev, int minor)
{
    int ret = 0;
    dev_t devno = MKDEV(globalmem_major, minor);

    cdev_init(&dev->cdev, &globalmem_fops);
    dev->cdev.owner = THIS_MODULE;

    ret = cdev_add(&dev->cdev, devno, 1);
    if (ret) {
        printk(KERN_NOTICE "%s: Error %d dev %d.\n", DEV_NAME, ret, minor);
    }

    return ret;
}
/*设备驱动模块加载函数*/
static int __init globalmem_init(void)
{
    int ret = 0;
    dev_t devno; 

    /* 申请设备号*/
    if(globalmem_major){
        devno = MKDEV(globalmem_major, 0);
        ret = register_chrdev_region(devno, 2, DEV_NAME);
    }else{ /* 动态申请设备号 */
        ret = alloc_chrdev_region(&devno, 0, 2, DEV_NAME);
        globalmem_major = MAJOR(devno);
    }

    if (ret return ret;
    }

    /* 动态申请设备结构体的内存,创建两个设备 */
    globalmem_devp = kmalloc(2*sizeof(globalmem_dev_t), GFP_KERNEL);
    if (!globalmem_devp) {
        unregister_chrdev_region(devno, 2);
        return - ENOMEM;
    }

    ret |= globalmem_setup(&globalmem_devp[0], 0); /* globalmem0 */
    ret |= globalmem_setup(&globalmem_devp[1], 1); /* globalmem1 */
    if(ret)
        return ret;

    init_MUTEX(&globalmem_devp[0].sem); /*初始化信号量*/
    init_MUTEX(&globalmem_devp[1].sem);

    printk(KERN_INFO "globalmem: up %d,%d.\n", MAJOR(devno), MINOR(devno));
    return 0;
}
/*模块卸载函数*/
static void __exit globalmem_exit(void)
{
    cdev_del(&globalmem_devp[0].cdev);
    cdev_del(&globalmem_devp[1].cdev);
    kfree(globalmem_devp);
    unregister_chrdev_region(MKDEV(globalmem_major, 0), 2);
    printk(KERN_INFO "globalmem: down.\n");
}

/* 定义参数 */
module_param(globalmem_major, int, S_IRUGO);

module_init(globalmem_init);
module_exit(globalmem_exit);

/* 模块描述及声明 */
MODULE_AUTHOR("Archie Xie ");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("A char device module just for demo.");
MODULE_ALIAS("cdev gmem");
MODULE_VERSION("1.0");

登录后复制

用户空间验证

  1. 切换到root用户

  2. 插入模块

    点击下载“电脑DLL修复工具”;

    insmod globalmem.ko
    

    登录后复制

  3. 创建设备节点(后续例程会展示自动创建节点的方法)

    cat /proc/devices 找到主设备号major
    mknod /dev/globalmem0 c major 0 和 /dev/globalmem1 c major 1
    

    登录后复制

  4. 读写测试

    echo "hello world" > /dev/globalmem
    cat /dev/globalmem
    

    登录后复制

    通过本文,我们了解了字符设备在Linux设备驱动中的应用和作用,学习了如何编写、注册、操作、修改和调试字符设备。我们发现,字符设备是一种非常适合嵌入式系统开发的方法,它可以让我们方便地描述和管理顺序访问设备,实现基本功能和高级功能。当然,字符设备也有一些注意事项和限制,比如需要遵循语法规范、需要注意权限问题、需要注意性能影响等。因此,在使用字符设备时,我们需要有一定的硬件知识和经验,以及良好的编程习惯和调试技巧。希望本文能够为你提供一个入门级的指导,让你对字符设备有一个初步的认识和理解。如果你想深入学习字符设备,建议你参考更多的资料和示例,以及自己动手实践和探索。

    以上就是Linux设备驱动之字符设备:一种描述和管理顺序访问设备的便捷方法的详细内容,更多请关注小闻网其它相关文章

    声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。