目录
- 安装库
- confidence作用
- 识别图片点击
- 优化代码,识别多张图片并点击
- 优化代码,识别多张图片,只要识别到图片就结束循环
安装库
pip install Pillow pip install opencv-python
confidence作用
confidence 参数是用于指定图像匹配的信度(或置信度)的,它表示图像匹配的准确程度。这个参数的值在 0 到 1 之间,数值越高表示匹配的要求越严格。
具体来说,confidence 参数用于调整在屏幕上搜索目标图像时的匹配精度:
0.0 表示完全不匹配。
1.0 表示完全匹配。
在实际应用中,图像匹配的信度可以帮助你处理一些图像上的细微差异。例如,屏幕上的图像可能因为分辨率、光线、颜色等原因与原始图像有些不同。通过调整 confidence 参数,你可以设置一个合理的阈值,使得图像匹配过程既不太严格(导致找不到图像),也不太宽松(导致误匹配)。
举个例子,如果你设置 confidence=0.8,那么只有当屏幕上的图像与目标图像的相似度达到 80% 以上时,才会被认为是匹配的。
识别图片点击
import pyautogui import time import os def locate_and_click_image(image_path, retry_interval=2, max_retries=5, click_count=1, confidence=None): """ 定位图片并点击指定次数。 :param image_path: 图片路径 :param retry_interval: 重试间隔时间(秒) :param max_retries: 最大重试次数 :param click_count: 点击次数 :param confidence: 图像匹配的信度(0到1之间),需要安装 OpenCV :return: 图片的位置 (x, y, width, height) 或 None(如果未找到) """ if not os.path.isfile(image_path): print(f"错误:图片路径无效或文件不存在: {image_path}") return None retries = 0 while retries < max_retries: try: if confidence is not None: location = pyautogui.locateOnScreen(image_path, confidence=confidence) else: location = pyautogui.locateOnScreen(image_path) if location is not None: print(f"找到图片: {image_path},位置: {location}") center = pyautogui.center(location) for _ in range(click_count): pyautogui.click(center) print(f"点击图片中心位置。点击次数:{_ + 1}") return location else: print(f"未找到图片: {image_path},{retry_interval}秒后重试...(重试次数: {retries + 1}/{max_retries})") time.sleep(retry_interval) retries += 1 except pyautogui.ImageNotFoundException: print(f"未找到图片: {image_path},{retry_interval}秒后重试...(重试次数: {retries + 1}/{max_retries})") time.sleep(retry_interval) retries += 1 print(f"达到最大重试次数: {max_retries},未找到图片: {image_path}") return None def main(): image_path = '1.png' # 替换为你的图片路径 retry_interval = 2 max_retries = 5 click_count = 1 confidence = 0.8 # 如果不使用 OpenCV,请将此参数设置为 None location = locate_and_click_image(image_path, retry_interval, max_retries, click_count, confidence) if location: print("操作完成。") else: print("未能定位到图片,程序结束。") if __name__ == "__main__": locate_and_click_image('1.png', retry_interval=2, max_retries=5, click_count=2, confidence=0.8)
优化代码,识别多张图片并点击
import pyautogui import time import os def locate_and_click_image(path, retry_interval=2, max_retries=5, click_count=1, confidence=None): if not os.path.isfile(path): print(f"错误:图片路径无效或文件不存在: {path}") return None retries = 0 while retries < max_retries: try: if confidence is not None: location = pyautogui.locateOnScreen(path, confidence=confidence) else: location = pyautogui.locateOnScreen(path) if location is not None: print(f"找到图片: {path},位置: {location}") center = pyautogui.center(location) for _ in range(click_count): pyautogui.click(center) print(f"点击图片中心位置。点击次数:{_ + 1}") return location else: print(f"未找到图片: {path},{retry_interval}秒后重试...(重试次数: {retries + 1}/{max_retries})") time.sleep(retry_interval) retries += 1 except pyautogui.ImageNotFoundException: print(f"未找到图片: {path},{retry_interval}秒后重试...(重试次数: {retries + 1}/{max_retries})") time.sleep(retry_interval) retries += 1 print(f"达到最大重试次数: {max_retries},未找到图片: {path}") return None def main(): images = [ {'path': '1.png', 'retry_interval': 2, 'max_retries': 5, 'click_count': 1, 'confidence': 0.8}, {'path': '3.png', 'retry_interval': 2, 'max_retries': 5, 'click_count': 1, 'confidence': 0.8}, # 添加更多图片 ] for image in images: location = locate_and_click_image(**image) if location: print(f"图片 {image['path']} 操作完成。") else: print(f"未能定位到图片 {image['path']},程序结束。") if __name__ == "__main__": main()
优化代码,识别多张图片,只要识别到图片就结束循环
import pyautogui import time import os def locate_and_click_image(path, retry_interval=2, max_retries=5, click_count=1, confidence=None): if not os.path.isfile(path): print(f"错误:图片路径无效或文件不存在: {path}") return None retries = 0 while retries < max_retries: try: if confidence is not None: location = pyautogui.locateOnScreen(path, confidence=confidence) else: location = pyautogui.locateOnScreen(path) if location is not None: print(f"找到图片: {path},位置: {location}") center = pyautogui.center(location) for _ in range(click_count): pyautogui.click(center) print(f"点击图片中心位置。点击次数:{_ + 1}") return True else: print(f"未找到图片: {path},{retry_interval}秒后重试...(重试次数: {retries + 1}/{max_retries})") time.sleep(retry_interval) retries += 1 except pyautogui.ImageNotFoundException: print(f"未找到图片: {path},{retry_interval}秒后重试...(重试次数: {retries + 1}/{max_retries})") time.sleep(retry_interval) retries += 1 print(f"达到最大重试次数: {max_retries},未找到图片: {path}") return False def main(): images = [ {'path': '1.png', 'retry_interval': 2, 'max_retries': 5, 'click_count': 1, 'confidence': 0.8}, {'path': '3.png', 'retry_interval': 2, 'max_retries': 5, 'click_count': 1, 'confidence': 0.8}, {'path': '4.png', 'retry_interval': 2, 'max_retries': 5, 'click_count': 1, 'confidence': 0.8}, # 添加更多图片 ] for image in images: success = locate_and_click_image(**image) if success: print(f"图片 {image['path']} 操作完成。") break else: print(f"未能定位到图片 {image['path']}。") if __name__ == "__main__": main()
到此这篇关于python pyautogui实现图片识别点击失败后重试的文章就介绍到这了,更多相关python pyautogui图片识别失败内容请搜索小闻网以前的文章或继续浏览下面的相关文章希望大家以后多多支持小闻网!
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。
评论(0)