目录
  • 引言
    • 同步任务
    • 死锁
    • 异步任务
  • 总结

引言

在上一篇文章中,我们探寻了队列是怎么创建的,串行队列和并发队列之间的区别,接下来我们在探寻一下GCD的另一个核心 – 任务

同步任务

void dispatch_sync(dispatch_queue_t queue, DISPATCH_NOESCAPE dispatch_block_t block);

我们先通过lldb查看其堆栈信息,分别查看其正常运行和死锁状态的信息

我们再通过源码查询其实现

#define _dispatch_Block_invoke(bb) ((dispatch_function_t)((struct Block_layout *)bb)->invoke)
void dispatch_sync(dispatch_queue_t dq, dispatch_block_t work) {
    uintptr_t dc_flags = DC_FLAG_BLOCK;
    if (unlikely(_dispatch_block_has_private_data(work))) {
        return _dispatch_sync_block_with_privdata(dq, work, dc_flags);
    }
    _dispatch_sync_f(dq, work, _dispatch_Block_invoke(work), dc_flags);
}

其通过_dispatch_Block_invoke将函数包装成了一个block,后继续向下传递,也就是说我们的代码是通过这个block来进行的执行,继续查询其的传递

static inline void _dispatch_sync_f_inline(dispatch_queue_t dq, void *ctxt, dispatch_function_t func, uintptr_t dc_flags) {
    if (likely(dq->dq_width == 1)) {
        return _dispatch_barrier_sync_f(dq, ctxt, func, dc_flags);
    }
    if (unlikely(dx_metatype(dq) != _DISPATCH_LANE_TYPE)) {
        DISPATCH_CLIENT_CRASH(0, "Queue type doesn't support dispatch_sync");
    }
    dispatch_lane_t dl = upcast(dq)._dl;
    // Global concurrent queues and queues bound to non-dispatch threads
    // always fall into the slow case, see DISPATCH_ROOT_QUEUE_STATE_INIT_VALUE
    if (unlikely(!_dispatch_queue_try_reserve_sync_width(dl))) {
        return _dispatch_sync_f_slow(dl, ctxt, func, 0, dl, dc_flags);
    }
    if (unlikely(dq->do_targetq->do_targetq)) {
        return _dispatch_sync_recurse(dl, ctxt, func, dc_flags);
    }
    _dispatch_introspection_sync_begin(dl);
    _dispatch_sync_invoke_and_complete(dl, ctxt, func DISPATCH_TRACE_ARG(
    _dispatch_trace_item_sync_push_pop(dq, ctxt, func, dc_flags)));
}

我们发现_dispatch_sync_f_inline中存在我们查看的堆栈信息时的两个函数_dispatch_sync_f_slow、_dispatch_sync_invoke_and_complete

static void _dispatch_sync_f_slow(dispatch_queue_class_t top_dqu, void *ctxt, dispatch_function_t func, uintptr_t top_dc_flags, dispatch_queue_class_t dqu, uintptr_t dc_flags) {
    ...省略部分...
    struct dispatch_sync_context_s dsc = {
        ...省略部分...
        .dsc_func    = func,
    };
    __DISPATCH_WAIT_FOR_QUEUE__(&dsc, dq);
    ...省略部分...
    _dispatch_sync_invoke_and_complete_recurse(top_dq, ctxt, func,top_dc_flags DISPATCH_TRACE_ARG(&dsc));
}
static void _dispatch_sync_invoke_and_complete_recurse(dispatch_queue_class_t dq, void *ctxt, dispatch_function_t func, uintptr_t dc_flags DISPATCH_TRACE_ARG(void *dc)) {
    _dispatch_sync_function_invoke_inline(dq, ctxt, func);
    _dispatch_trace_item_complete(dc);
    _dispatch_sync_complete_recurse(dq._dq, NULL, dc_flags);
}
static void _dispatch_sync_invoke_and_complete(dispatch_lane_t dq, void *ctxt, dispatch_function_t func DISPATCH_TRACE_ARG(void *dc)) {
    _dispatch_sync_function_invoke_inline(dq, ctxt, func);
    _dispatch_trace_item_complete(dc);
    _dispatch_lane_non_barrier_complete(dq, 0);
}

我们发现,两种堆栈信息的函数的func这个block都是传递给的_dispatch_sync_function_invoke_inline

static inline void _dispatch_sync_function_invoke_inline(dispatch_queue_class_t dq, void *ctxt, dispatch_function_t func) {
    dispatch_thread_frame_s dtf;
    _dispatch_thread_frame_push(&dtf, dq);
    _dispatch_client_callout(ctxt, func);
    _dispatch_perfmon_workitem_inc();
    _dispatch_thread_frame_pop(&dtf);
}
void _dispatch_client_callout(void *ctxt, dispatch_function_t f) {
    _dispatch_get_tsd_base();
    void *u = _dispatch_get_unwind_tsd();
    if (likely(!u)) return f(ctxt);
    _dispatch_set_unwind_tsd(NULL);
    f(ctxt); // 调用block函数,执行任务
    _dispatch_free_unwind_tsd();
    _dispatch_set_unwind_tsd(u);
}

最终通过_dispatch_client_callout函数执行的我们的block代码,和我们正常执行的堆栈信息相符合。

通过我们的源码的探索,我们发现了在同步任务中并没有任何关于开辟线程的操作,而且任务并没有保存而是直接执行的。

死锁

我们在获取的堆栈信息发现了崩溃调用的函数是__DISPATCH_WAIT_FOR_QUEUE__,在源码中查看

static void __DISPATCH_WAIT_FOR_QUEUE__(dispatch_sync_context_t dsc, dispatch_queue_t dq) {
    uint64_t dq_state = _dispatch_wait_prepare(dq);
    if (unlikely(_dq_state_drain_locked_by(dq_state, dsc->dsc_waiter))) {
        DISPATCH_CLIENT_CRASH((uintptr_t)dq_state,
        "dispatch_sync called on queue"
        "already owned by current thread"); // 当前线程已存在这个同步队列
    }
    ...省略部分...
}
// crash条件
static inline bool _dq_state_drain_locked_by(uint64_t dq_state, dispatch_tid tid) {
    return _dispatch_lock_is_locked_by((dispatch_lock)dq_state, tid);
}
static inline bool _dispatch_lock_is_locked_by(dispatch_lock lock_value, dispatch_tid tid) {
    // equivalent to _dispatch_lock_owner(lock_value) == tid
    // lock_value 当前队列, tid 当前线程
    return ((lock_value ^ tid) & DLOCK_OWNER_MASK) == 0;
}

通过这里可以看到 崩溃的条件:串行队列,当前队列已在当前线程中。

异步任务

void dispatch_async(dispatch_queue_t queue, dispatch_block_t block);

一样先通过lldb查看一下堆栈信息

很明显的和同步任务的区别是里面有pthread.dylib的调用,我们还是来通过源码看一下吧。

void dispatch_async(dispatch_queue_t dq, dispatch_block_t work) {
    dispatch_continuation_t dc = _dispatch_continuation_alloc();
    uintptr_t dc_flags = DC_FLAG_CONSUME;
    dispatch_qos_t qos;
    qos = _dispatch_continuation_init(dc, dq, work, 0, dc_flags);
    _dispatch_continuation_async(dq, dc, qos, dc->dc_flags);
}
static inline dispatch_qos_t _dispatch_continuation_init(dispatch_continuation_t dc, dispatch_queue_class_t dqu, dispatch_block_t work, dispatch_block_flags_t flags, uintptr_t dc_flags) {
    void *ctxt = _dispatch_Block_copy(work);
    ...省略部分...
    dispatch_function_t func = _dispatch_Block_invoke(work);
}
static inline dispatch_qos_t _dispatch_continuation_init_f(dispatch_continuation_t dc, dispatch_queue_class_t dqu, void *ctxt, dispatch_function_t f, dispatch_block_flags_t flags, uintptr_t dc_flags) {
    pthread_priority_t pp = 0;
    dc->dc_flags = dc_flags | DC_FLAG_ALLOCATED;
    dc->dc_func = f;
    dc->dc_ctxt = ctxt;
    ……
    _dispatch_continuation_voucher_set(dc, flags);
    return _dispatch_continuation_priority_set(dc, dqu, pp, flags);
}

异步任务将任务先用_dispatch_continuation_init进行了copy操作,保存了任务,同时和同步函数一样将任务用_dispatch_Block_invoke进行了封装,然后将copy的任务和封装的block赋值给dispatch_continuation_t dc,也就是相当于保存了队列中添加的任务,最终返回一个dispatch_qos_t的对象qos。

#define dx_push(x, y, z) dx_vtable(x)->dq_push(x, y, z)
static inline void _dispatch_continuation_async(dispatch_queue_class_t dqu, dispatch_continuation_t dc, dispatch_qos_t qos, uintptr_t dc_flags) {
    return dx_push(dqu._dq, dc, qos);
}

源码中全局搜索dq_push,我们在熟悉的文件Dispatch Source/init.c中找到了每种队列对应的dq_push

DISPATCH_VTABLE_SUBCLASS_INSTANCE(queue_serial, lane,
    .do_type        = DISPATCH_QUEUE_SERIAL_TYPE,
    ......
    .dq_push        = _dispatch_lane_push,
);
DISPATCH_VTABLE_SUBCLASS_INSTANCE(queue_concurrent, lane,
    .do_type        = DISPATCH_QUEUE_CONCURRENT_TYPE,
    ......
    .dq_push        = _dispatch_lane_concurrent_push,
);
DISPATCH_VTABLE_SUBCLASS_INSTANCE(queue_global, lane,
    .do_type        = DISPATCH_QUEUE_GLOBAL_ROOT_TYPE,
    ......
    .dq_push        = _dispatch_root_queue_push,
);
DISPATCH_VTABLE_SUBCLASS_INSTANCE(queue_main, lane,
    .do_type        = DISPATCH_QUEUE_MAIN_TYPE,
    ......
    .dq_push        = _dispatch_main_queue_push,
);

我们通过最常用的global的_dispatch_root_queue_push来进行探索

void _dispatch_root_queue_push(dispatch_queue_global_t rq, dispatch_object_t dou, dispatch_qos_t qos) {
...省略部分...
    #if HAVE_PTHREAD_WORKQUEUE_QOS
        if (_dispatch_root_queue_push_needs_override(rq, qos)) {
            return _dispatch_root_queue_push_override(rq, dou, qos);
        }
    #else
        (void)qos;
    #endif
    _dispatch_root_queue_push_inline(rq, dou, dou, 1);
}
static void _dispatch_root_queue_push_override(dispatch_queue_global_t orig_rq, dispatch_object_t dou, dispatch_qos_t qos) {
    ......
    _dispatch_root_queue_push_inline(rq, dc, dc, 1);
}

我们可以看到其内部是调用的_dispatch_root_queue_push_inline函数,进一步说调用_dispatch_root_queue_poke_slow

static void _dispatch_root_queue_poke_slow(dispatch_queue_global_t dq, int n, int floor) {
    ......
    _dispatch_root_queues_init();
    ...利用线程池调度任务等相关代码...
}
static inline void _dispatch_root_queues_init(void) {
    dispatch_once_f(&_dispatch_root_queues_pred, NULL,
    _dispatch_root_queues_init_once);
}

在_dispatch_root_queues_init_once中进行了线程对任务的调度

_dispatch_worker_thread2, _dispatch_worker_thread2 ->

_dispatch_root_queue_drain -> _dispatch_continuation_pop_inline ->

_dispatch_continuation_invoke_inline,_dispatch_root_queue_poke_slow

进行了线程池的相关操作

也就是我们在堆栈信息中pthread.dylib的调用的原因。这些异步调度我们已经无法进行下一步查看了,所以还是看回我们的堆栈信息,很明显函数的执行仍是通过_dispatch_client_callout进行的执行。

总结

  • 同步任务:任务立即执行,无线程相关操作,会阻塞当前线程
  • 异步任务:保存任务,进行线程相关操作,可以开辟子线程,不会阻塞当前线程
  • 死锁:在当前线程同步(和当前队列相关)同步的向里面添加任务,就会死锁

以上就是iOS开发探索多线程GCD任务示例详解的详细内容,更多关于iOS开发多线程GCD任务的资料请关注我们其它相关文章!

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。